36,76-DIHYDROXYKAURENOLIDE. A NEW METABOLITE

OF GIBBERELLA FUJIKUROI

J. H. Bateson and B. E. Cross

Department of Organic Chemistry, The University, Leeds LS2 9JT (Received in UK 29 July 1971; accepted in UK for publication 4 August 1971)

During the isolation of 7β , 18-dihydroxykaurenolide¹ (1) from large scale fermentations of <u>G. fulikuroi</u> an isomeric metabolite [m.p. 175-176°, $[\alpha]_D^{24} - 34.7°$ (c 0.64 in CHCl₃)] of similar polarity was discovered which has been shown to have structure (2). Its IR spectrum revealed the presence of hydroxy, Y-lactone and terminal methylene groupings (ν_{max}^{CHBr} 3 3610, 3470, 1763, 1662 and 886 cm⁻¹), whilst the NMR spectrum [τ 8.95 (3H, s, 20-Me), 8.62 (3H, s, 18-Me), 7.95 (3H, s, 0COMe), 7.93 (3H, s, 0COMe), 5.31 (1H, t, J 6.5 Hz, 6-H), 5.12 and 5.0 (2H, br, 17-H₂), 4.6 (1H, m, 3a-H), 4.20 (1H, d, J 7 Hz, 7a-H)] of its diacetate was consistent with structure (3).

The carbon skeleton and stereochemistry (except that at C-3) of the metabolite was established by the following reaction sequence. Treatment of the monotosylate (5) with boiling collidine gave the olefin (12) which on hydrogenation afforded the tetrahydro-compound (6). Fractional crystallisation of the latter gave one of the pure 16-epimers which was identical (m.p., IR and $[a]_{\rm D}$) with β -dihydro-7-hydroxykaurenolide (7).²

Oxidation of the metabolite with chromium trioxide-pyridine-dichloromethane³ gave the diketo-lactone (4), v_{max} 1775 and 1700 cm⁻¹, τ 9.24 (3H, s, 20-Me), 8.44 (3H, s, 18-Me), 7.22 (d, J 7 Hz, 5-H), 5.14 (d, J 7 Hz, 6-H), 5.10 and 4.93 (17-H₂), whose mass spectrum contained peaks at <u>m/e</u> 151 and 123 assigned⁴ to the ions (10) and (11), thus showing that ring A of the metabolite carries a secondary hydroxy-group. Reduction of the diketo-lactone (4) with chromous chloride in aqueous acetone gave <u>inter alia</u> the diketone (13) [v_{max}^{CHBT} 3 1705 cm⁻¹, τ 9.02 (3H, d, J 6.5 Hz, 18-Me), 8.71 (3H, s, 20-Me), 5.06 (2H, 17-H₂)] thereby establishing that the ring A oxygen function is situated at C-3. Reduction of the diketo-lactone (4) with sodium borohydride gave the 3a,7a-diol (8) as the result of attack on the less-hindered β -face of (4) (cf. ref. 2). The chemical shift of the 5-proton doublet in the kaurenolide (2) occurs at lower field (τ 8.07) than in either 7-hydroxykaurenolide (9) (τ 8.26) or the diol (8)

(τ 8.32), thus showing that the 5-proton in (2) is deshielded by an axial (β) 3-hydroxy-group.⁵
The kaurenolide (2) is the first example of a metabolite of <u>G</u>. <u>fujikuroi</u> in which
3β-hydroxylation has occurred prior to contraction of ring B; its possible role in the
biosynthesis of the gibberellins is under investigation.

	R	R [∠]	R ²	R ⁴
1	H2	сн ₂ он	а-н, β-ОН	^H 2
2	αН,βОН	Me	αН,βОН	H2
3	α-Н,β-ОАс	Me	α-Н,β-ОАс	H2
4	0	Me	0	^н 2
5	α-H,β-OTs	Me	α Н,βОН	H2
6	H2	Ме	αН, βОН	H,Me
7	H2	Me	αн, β0н	α-Ме,β-Н
8	α-0Н,β-Н	Me	α-ОН,β-Н	H2
9	H2	Me	а-н, β-ОН	H2

REFERENCES

- 1. B. E. Cross, J. R. Hanson and R. H. B. Galt, <u>J. Chem. Soc</u>., 3783 (1963).
- 2. B. E. Cross, J. R. Hanson and R. H. B. Galt, J. Chem. Soc., 2944 (1963).
- 3. R. Ratcliffe and R. Rodehorst, J. Org. Chem., 35, 4000 (1970).
- A. I. Kalinovsky, E. P. Serebryakov, A. V. Simolin, V. F. Kucherov and O. S. Chizhov, <u>Org. Mass Spectrom.</u>, <u>5</u>, 33 (1971).
- N. S. Bhacca and D. H. Williams, "Applications of NMR Spectroscopy in Organic Chemistry", Holden-Day, 1964, p. 183.